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EXECUTIVE SUMMARY 

 
This report is a summary of recent efforts to look at the physical and biophysical aspects of 
historical and projected climate, water, and land use change in Malawi. For improved projections of 
climate, water, and land use, our work has centered on modeling. We are using various models for a 
variety of tasks, but the main objective has been to calibrate these models with the best available 
data for producing projections that are more accurate. The next step is to integrate these models via 
coupled processes at appropriate length and time scales and assess their reliability for making useful 
projections. Our ultimate focus is to develop a more consistent methodology for predicting climate 
impacts on water, agriculture, and land use that operates across scales, i.e., trends that vary across 
time and space at different resolutions. This methodology should be consistent in that the temporal 
and spatial scales of biophysical projections will be useable at scales needed and will be transportable 
to other regions. This work was completed mainly through a combination of geographic information 
system (GIS), statistics, and process-based models with an aim to better assess agricultural changes 
and their driving factors. 
 
Two trips to Malawi in 2013 and 2014 formed the basis of the field work in establishing contacts, 
setting up baseline data gathering operations, installing weather stations, sharing data, and identifying 
key locations for study. This work was done by Nathan Moore, Joseph Messina, Pouyan 
Nejadhashemi, Victoria Breeze, Umesh Adhikari, Matthew Herman, Brad Peter, and Hannah 
Deindorfer. The modeling and data analysis was done at MSU. In Malawi, we worked with David 
Mkwambisi to set up the weather stations and ensure data collection with his team.  
 
Several new findings show clear evidence of changing patterns that influence weather, hydrology, 
and agricultural land use in Malawi. First, the onset of the rainy season (start of season) is delayed by 
approximately six days and the trend shows increasingly later start dates. The United States Agency 
for International Development (USAID) funded Climate Hazards Group InfraRed Precipitation 
with Station (CHIRPS) datasets were found to be acceptable for use in other models, based on the 
close correlation of CHIRPS data with observed weather station data. For better understanding of 
spatial relationships between weather, climate, and food production in Malawi, five new weather 
stations in agricultural sites have been established and will help reduce this uncertainty. Second, 
watershed models have been calibrated but need further validation to capture peak flow. Watershed 
models have been constructed for all of Malawi’s major watersheds. Third, the existing datasets on 
which land is in agriculture disagree significantly. This is a problem for integrating models. In 
addition, net primary productivity (NPP) estimates show declines in productivity over Malawi’s 
recent history. Finally, we have shown that extensification is poorly characterized among several 
independent datasets. We have little understanding of what locations are marginal for agriculture and 
why assessments disagree. 
 
Biophysical patterns (land use, greenness, rainfall, etc.) are poorly measured in Malawi both in spatial 
and temporal resolution as well as in terms of coherent and consistent indicators of land cover. 
Some relatively straightforward evaluations of weather data, land cover data, and crop yield across 
scales should be able to improve agricultural predictions of yield and nutrient stress significantly. 
Currently there is disagreement even in the sign of change (i.e., whether it is positive or negative). 
More data at finer scales is always welcome and reduces uncertainty, but ultimately significant effort 
is needed to describe where processes are inconsistent at different scales (e.g., they appear at fine 
scales but not at coarser scales, or how drought detection can depend sensitively on the selection of 
time scale) and how models can make useful projections in the face of disagreement between various 
data sources. 
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There are several implications of these results. Crop yields may be declining despite the Food and 
Agricultural Organization (FAO) estimates. New methods are being developed to better characterize 
the biophysical changes in recent decades. These methods can be used and improved by Malawi 
researchers and field teams of MSU researchers to improve predictions. Several training sessions, short 
courses, etc. need to be implemented to develop the scientific expertise for doing integrated modeling 
and assessment. Specifically, training is needed for climate statistics, hydrologic modeling, and remote 
sensing/GIS. 
 
This report is arranged in three sections: (A) Climate Trends, (B) Hydrologic Modeling, and (C) 
Land Use Analysis.  
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A. CLIMATE ANALYSIS 

1. INTRODUCTION 

Malawi’s meteorological data is sparse; only 26 stations are available and not all have sufficient data 
density for use in analysis. We found only 19 that passed basic quality control tests. We first analyzed 
these station data to detect any significant trends in seasonality, and then we compared these to 
gridded datasets that will be used in multiple models that require climate data as an input. In 
addition, we are constructing climate regime diagrams to assess how Malawi's agricultural regions are 
shifting over time. Thus far we have examined the new CHIRPS high-resolution gridded dataset to 
determine whether the onset of the rainy season has changed significantly or not since the 1960s. 

2. METHODOLOGY 

We used the Famine Early Warning Systems Network (FEWSnet) algorithm to calculate the start of 
the rainy season (SOS). The SOS algorithm is simple: If the first 10-day period (two pentads) has 25 
mm of rain and the following two pentads have 20 mm of rain, then the season has started. We used 
an integrated Python-ArcGIS script to test the SOS for each year of available data, 1981-2013. We 
ran a conditional test on pentads starting in October through the end of January, to test a larger 
buffer around the traditional start of the rainy season in November.  

The biggest task in comparing the two datasets was compressing the amount of data into ArcGIS. 
First, we took a map of every year of CHIRPS data, overlaid it onto a map of all of the rainfall 
collecting locations, and cut out the places where the CHIRPS data points were closest to the station 
data. Then, we took both the station data and CHIRPS data and further narrowed the data from 
daily to pentadal (five-day sums). In order to compare the start of season for each year in both 
CHIRPS and station datasets, we used an algorithm that would give a value for the cell of the first 
pentad in which was met the criteria of Pentad A+B >= 25mm, and Pentad C+D>= 20mm. This 
was used to mark the date of the start of season. In order to compare the dates for both CHIRPS 
data and station data over time, we plotted the start of season dates for both datasets on a graph, 
with each year on the X axis and date on the Y axis. The resulting lines showed an almost identical 
pattern, of which we were able to calculate the R-squared values, showing how well they fit one 
another. 

We have several conclusions that have significant implications for food production in Malawi at the 
national level. First, the overall start of the rainy season across all Malawi has shifted later in the year 
by about six days from November 16-20 to November 22-26. These data also show that the rains 
arrive later in the south (~9 days) than the north, and later in high-elevation northern areas (~7.5 
days) than low-elevation northern areas (~3.5 days) (see Figure 1).  

We also developed a new indicator called Early SOS that refers to the first SOS data among any of 
Malawi’s 28 districts. This Early SOS has shifted dramatically later—approximately 24 days, from 
early October to the beginning of November. The shift in Early SOS is most pronounced in the 
south (~16 days), but also noticeably in the low-elevation northern area (~9 days). The high-
elevation northern area showed a slight shift earlier in the year by ~3 days. This curious spatial 
variation in SOS contraction is not well understood.  
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2.1. Selected Agricultural Areas: Mzimba, Karonga, and Thyolo  
 
We investigated the change in SOS across three districts of Malawi: the high-elevation northern 
district of Mzimba, the low-lying northern district of Karonga, and the southern district of Thyolo 
(See Figures 1, 2, and 3). 

The SOS in Mzimba shifted from mid to late November, Karonga from late November to early 
December, and Thyolo from early November to mid November. 

Mzimba: The mean SOS shifted by approximately 1.5 pentads or 7.5 days. The minimum SOS 
actually shifted forward by three days. Maximum SOS shifted back nine days and the range in SOS 
contracted by 12 days.  
 
Karonga: The mean SOS shifted by approximately 0.7 pentads, or 3.6 days. The minimum SOS 
shifted back by nine days, maximum by five days, and range in SOS increased by four days.  

Thyolo: The mean SOS shifted by approximately 1.9 pentads or 9.4 days. The minimum SOS 
shifted back by 16 days, maximum by 12 days, and the range in SOS increased by four days. This is 
the earliest district. 
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Figure 1. Progressive SOS Maps in Five-Year Intervals. Brown=Late Onset (Dec.), 
Green=Early Onset (Oct.) 
Shift in Five-Year Average Mean SOS (1981-2010) 

 
Source: Author's calculations with data from CHIRPS 1.8.  
Note: Larger versions of these maps avaliable on request. 
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Figure 2. Earliest SOS for Any District in Malawi over the Observed Period 

 
Source: Author's calculations with data from CHIRPS 1.8. 

 

Figure 3. Example SOS Trends for All Pixels in Thyolo District 

 
Source: Author's calculations with data from CHIRPS 1.8. 
Note: Minimun and maximum represent extreme outlier observations from the gridded dataset for locations 
within Thyolo district. 
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Figure 4. CHIRPS and Station SOS Time Series for Makoka, Malawi 

 
Source: Author's calculations with data from CHIRPS 1.8 and Malawi Met. Office weather stations. 

 
Gridded data are excellent for use in models of food production and related processes, but gridded 
data often fail to capture properly the heterogeneity of station data. Unfortunately, Malawi’s network 
of weather stations is not sufficiently dense to  provide a reliable representation of climate 
throughout the country. As part of validating the use of gridded data, we correlated the gridded 
pixels coinciding with the station locations.  

Correlations between CHIRPS and station data (Table 1) are fairly good on average. A few stations 
(Makoka, Chitedze) are low but still show some trend agreement (Figure 4). We need to test other 
gridded datasets to calculate which best fit Malawi data and thus which are best for use in the 
Systems Approach to Land Use and Sustainability (SALUS) and the Soil and Water Assessment Tool 
(SWAT). Surprisingly, none of the gridded datasets thus far come out as clearly superior with respect 
to frequency, spatial resolution, bias, and interquartile range. 

 

Table 1. SOS Data Correlations between CHIRPS 1.8 and Station Data 
0.728 Chitipa 0.493 Salima 

0.700 Karonga 0.891 Nkhotakota 

0.768 Bolero 0.573 Dedza 

0.422 Mzimba 0.170 Makoka 

0.578 Mzuzu 0.599 Chileka 

0.454 Nkhata Bay 0.625 Chichiri 

0.517 Kasungu 0.670 Bvumbwe 

0.499 Lilongwe 0.688 Mimosa 

0.306 Chitedze 0.800 Thyolo 

  0.646 Ngabu 

Source: Author's calculations from SOS and CHIPS data. 

8/1/04

8/21/04

9/10/04

9/30/04

10/20/04

11/9/04

11/29/04

12/19/04

1/8/05

1/28/05

2/17/05

MAKOKA	STATION

MAKOKA	CHIRPS
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While CHIRPS has a favorable spatial and temporal resolution, National Aeronautics and Space 
Administration Prediction of Worldwide Energy Resource (NASA Power) has better performance 
metrics. We will need to test multiple datsets for uncertainty propagation and sensitivity to be able to 
report reliability to end users. 

2.2. Weather Station Construction in Malawi 
 
Four weather stations have been installed at Bunda College, Linthipe, Golomoti, and Nsipe. In 
addition to construction and installation, training on data collection and station operation was 
provided for technical staff and faculty at Bunda College (Figure 5). With the four weather stations 
built, we now have access to the following data at those sites: wind speed, wind direction, barometric 
pressure, temperature, relative humidity, dew point, precipitation, photosynthetically active radiation 
(PAR), and soil moisture. Having these data collected in critical, representative transitional areas for 
agriculture will allow us to measure how well traditional gridded datasets perform, how much 
improvement can be obtained by building new infrastructure and scientific capacity, and—most 
critically—how changes in land use and agricultural activity are coupled to shifts in weather and 
climate. If marginal land use increases or if deforestation continues along the agricultural periphery, 
gridded datasets interpolating at larger scales will fail to capture this feedback. These fine-scale 
interactions are crucial for identifying key processes in agricultural change and we need stations 
placed appropriately to measure them. 
 
Figure 5. New Weather Station Locations 

 
Source: Author's GPS data with imagery from NASA MODIS.  
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3. NEXT STEPS AND FOLLOW-UP 

First, we need to test whether the end of the rainy season has arrived earlier, and map the spatial 
pattern of rainy season duration and any changes. This is crucial to understanding physical drivers of 
land change variability. In addtion, we need to perform a cluster analysis on the curious spatial 
variation in SOS contraction across Malawi, and assess whether or not the patterns are consistent 
with local, regional, or synoptic patterns of weather forcing. Part of this can be done by looking at 
coarse versus fine scale datasets, and so we will test the FEWSnet algorithm on several other 
datasets to identify scales of pattern similarity. The new weather stations will help here; we plan to 
assess the utility of the new weather stations and determine the need for expansion in part due to 
locations where trends disagree across datasets. In cases where the rainfall patterns are poorly 
characterized by the FEWSnet algorithm, we may need to create alternate algorithms that are more 
appropriate for agriculture (1/e, etc.). This will further aid in testing to see whether the climate 
trends are clustered or not. 

The main objective for identifying the best gridded dataset is to get a good handle on estimating its 
accuracy in addition to identifying products most appropriate for processes at multiple scales 
(watershed, point, and national) so that we have a cohesive methodology (consistent timescales, 
limited error propagation) for examining climate impacts on agriculture. Once the integrated 
methodology is tested and validated, we can test this new tool for assessing vulnerability in 
Cambodia and other regions. 

Currently we have no dataset that is both spatially and temporally high-resolution with low error. 
State-of-the-art modeling now requires daily high-resolution gridded data and current datasets fall 
short in accuracy. Ultimately we need to develop such a high-resolution dataset—something like a 
CHIRPS/NASAPower hybrid—for use in crop productivity and farming analysis as well as for error 
propagation studies. Then we will need to assess bias in the historical general circulation model 
(GCM) simulations that we have already acquired. The historical simulations will be used to 
constrain the accurcy of our rainy season predictions. From this we will be able to calculate the bias 
for the future projections and bias-correct them for use in other elements of Megatrend One (e.g., 
the crop models and SWAT). Understanding how delays or changes in the rainy season propagate 
into other systems is crucial to aid planning for farmers and other food systems stakeholders. 

B. HYDROLOGIC MODELING 

1. SUMMARY 

SWAT is a watershed model developed to quantify the impact of land management practices in 
large, complex watersheds. In this study, SWAT was used to assess the impact of climate change on 
land and water resources in Malawi. By comparing baseline conditions with the projected conditions, 
the impact of climate change on crop-production-related water balance components—such as actual 
evapotranspiration, soil water content, water percolation, surface runoff, base flow—and water yield 
will be assessed. Calibration and validation of a SWAT model was completed for all the watersheds 
(eight in total), for which observed data were available. These models were then run for 20 years 
(1981-2000) to serve as a base period for the impact assessment. Five GCMs, which have been 
reported to reproduce the mean annual precipitation cycle in Eastern Africa, were downscaled for 
the mid-21st century (2041-2060). Next, the GCM outputs will be incorporated into the SWAT 
model to assess the climate change impact in Malawi. Modeling water balance under various climate 
change scenarios is expected to allow farmers/policy makers to plan and adopt proactive 
anticipatory adaptation measures to ensure crop productivity and food security for the future. 
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2. INTRODUCTION 

Malawi is dominated by smallholders who rely on rain-fed subsistence farming for their livelihoods. 
Climate change has exacerbated their vulnerability and amplified food insecurity. Two major climate 
change threats to food production systems are heat and moisture stresses to the crops. All the GCM 
models suggest a general increase in temperature for the region in the future; however, the models 
disagree on the general magnitude and direction of change in precipitation. Though the GCM 
models provide spatial information on projected change in temperature and precipitation, they do 
not provide any information on how the land and water resources will be impacted by the global 
warming. It is imperative to project the change in moisture balance in the watersheds to understand 
how water use and planning may be affected under future climate conditions. To estimate the 
potential crop moisture stress and formulate proactive adaption measures, an estimation of various 
crop-production related soil-water parameters is also needed.  

This study aims to use SWAT models to assess the impact of climate change on water resources and 
crop-production-related water parameters at sub-watershed and watershed scales in Malawi. By 
comparing the baseline water balance (1981-2000) with future water balances (2041-2060), the 
impact of climate change on evapotranspiration, soil water content, water percolation, surface 
runoff, base flow and water yield will be assessed. The projected impact on these parameters will 
enable farmers to plan water conservation measures, water harvesting operations, and irrigation 
planning to maintain sustainable food production. Currently, international development agencies, 
such as African Development Bank (2013), are working with the government of Malawi to bring 
more agricultural areas under irrigation. Therefore, this study is expected to provide information that 
will enable concerned stakeholders to plan climate change adaptation measures based on informed 
decision-making.  

3. METHODOLOGY 

We acquired 30 m global digital elevation data, 400 m global land use data, and 30 arc-second 
Harmonized World Soil Data, and created respective databases for use in building hydrological 
models. We also obtained daily stream flow data from 48 gauging stations and monthly stream flow 
data from two gauging stations at various locations throughout Malawi. However, the observed 
stream flow data obtained were mostly from the period prior to 1990s. We obtained meteorological 
data from 26 monitoring stations (Figure 6) and used them to construct hydrological models under 
current conditions.  
 
Malawi was divided into 10 watersheds, out of which we are examining eight (where observed 
streamflow data were available for calibration and validation) using the SWAT model. In order to 
ensure accurate model performance, first, the hydrological parameters were adjusted until the 
simulated stream flow obtained from the models was within an acceptable range of observed values 
(calibration procedure).1 Then the model performances were tested for the new time period without 
adjusting any parameters (validation procedure). These simulations are computationally intensive 
and we used MSU’s High Performance Computer Center to proceed with the simulations. After 
completing the calibration and validation, we ran the models on a daily time-step for 20 years (1981-
2000), which will serve as a base period and will be compared with the future climate scenarios.  

                                                         
1 Peak flows are notoriously difficult to replicate, and the selection of calibration and validation time windows can alter 
the accuracy of model results, but that is limited by data availability. 
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Figure 6. Watersheds in Malawi and Weather Stations Used for the SWAT Model 

Source: Boundary data obtained from FAO 2000. 

 

4. FINDINGS 

Despite the restricted time window available for building the hydrological models, the SWAT 
models satisfactorily reproduced the stream flow for the calibration and validation periods. Model 
simulation results were statistically compared with the observed data by using Nash-Sutcliffe 
efficiency (NSE), percent bias (PBIAS) and the root mean square error to the standard deviation of 
measured data (RSR) (Moriasi et al. 2007). NSE, PBIAS, and RSR values ranged from 0.55 to 0.8, -
6.1 to 29.6 and 0.45 to 0.67, respectively, which were within the acceptable range for the monthly 
calibration.  

Figure 7 shows 20-year (1981-2000) average annual evapotranspiration, soil moisture content and 
surface runoff obtained through SWAT modeling. The simulation captured the spatial and temporal 
variability of evapotranspiration, soil water content, water percolation, surface runoff, base flow, and 
water yield. For example, concerning soil moisture content, evapotranspiration, and surface runoff, 
higher values were observed in November-March and lower in May-September. A more detailed 
analysis of the data is yet to be completed. These findings will serve as baselines for our climate 
change impact assessment. 
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Figure 7. Long-term Annual Averages of (a) Evapotranspiration, (b) Soil Moisture Content, 
and (c) Surface Runoff 

 

 

 

Source: Author's calculations with data from SWAT model.  

 
5. CONCLUSIONS AND LIMITATIONS 

We have completed building, calibrating and validating the SWAT hydrological models to establish a 
baseline for assessing the water balance and climate change impacts on crop water availability in 
Malawi. These modeling efforts tie directly to the much-needed characterization of uncertainty for 
Malawi’s land and water resources and feeds directly into planning adaptation measures to ensure 
food security for the future.  

Data availability was the major hurdle encountered in the modeling process. Meteorological data 
were available from only 26 stations in the country. Denser meteorological data would have 
improved the model predictability. Stream flow data were obtained from Global Runoff Data 
Center, which were mostly from before the 1990s. Several contact attempts to the Malawian Water 
Resources Department failed, and thus, the most recent stream flow data could not be obtained.  

  

(a) (b) (c) 
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6. NEXT STEPS AND FOLLOW-UP 

Our next step is to incorporate various climate change scenarios into the models in order to assess 
the climate change impacts on land and water resources in Malawi at both the watershed and sub 
watershed scale. We have downloaded GCM outputs from five climate models on monthly time-
step from Earth System Grid Federation. We will downscale these datasets using the delta method 
and correct them using the quantile bias correction technique. These datasets will be used to create 
the future temperature and precipitation time series (2041-2060). The SWAT model will be run on 
these new sets of data and the model outputs will be compared with the base model outputs. The 
result will be a quantitative description of the impacts on evapotranspiration, soil water content, 
water percolation, surface runoff, and water yield under climate change and identification of the 
most vulnerable places in terms of water availability for crop production. The modeling process may 
be replicated as needed for assessing the impact of climate change in water balance in other 
countries as well. Both the calibrated models and the results of the modeling exercises will be 
available to Lilongwe University of Agriculture and Natural Resources (LUANAR) for continued 
use and improvement in managing water use for agriculture and human consumptions. This data will 
also be useful to USAID and GDL for applications where future projections of water availability are 
needed to improve agricultural yield predictions. 

C. LAND USE ANALYSIS 

1. INTRODUCTION 

Land use in Malawi is heterogeneous and complex and the drivers of variability in most of the 
regions are unclear. We have compiled crop yield data from various economic sources (FAO, World 
Bank, etc.) and produced scatterplot matrices to assess the level of correlation between reported 
yield and remotely sensed vegetation (based on NASA Moderate Resolution Imaging 
Spectroradiometer (MODIS) land products). We are primarily seeking to understand how 
agricultural productivity and land use are changing over space and time. This relates to the original 
objectives by identifying the spatial heterogeneity of yield differences and yield gaps, and ties to the 
overarching theme of assessing food security through combining local-scale understanding with 
broader remotely sensed trends. 

1.1. Land Classification Uncertainty 
 
Land use across Malawi is a mosaic with agricultural land use the most prevalent. Multiple land use 
types coexist: intercropping, tree crops mixed with row crops, and patchworks of different farming 
types. This makes land use difficult to categorize at any but the finest of spatial scales. Agriculture is 
also rapidly changing and extensifying. This complex, mixed-use approach to cropping tends to 
make classification difficult from both economic and remote sensing perspectives. The land use 
maps produced by various agencies (GlobCover, MODIS, IFPRI, FAO, etc.), given the 
methodologies they use, are unable to capture the intricacies of variation and the changes in land use 
that take place.                                   
 
Crop models such as the Decision Support System for Agrotechnology Transfer (DSSAT) and 
SALUS rely upon accurate assessments of agricultural land in order to make accurate yield 
predictions. The inherent uncertainty in these land cover datasets propagates into crop yield 
predictions. There is a gap in research between coarse-scale land mapping and site-specific crop 
modeling that needs to be resolved.  
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2. METHODOLOGY  

Figure 8A is a comparison of two land cover assessments by the International Food Policy Research 
Institute (IFPRI) and the Food and Agriculture Organization (FAO), and illustrates the degree of 
disagreement between the data [for a more detailed discussion see Messina (2015)]. The FAO 
dataset is a composite of land classified as agriculture for datasets released for 2000 and 2010 and 
the IFPRI dataset is from 2002. Agriculturally relevant land use classifications were extracted from 
the datasets and layered to show where the datasets agree and disagree. According to the FAO, 
agriculture accounts for a total of 16% of Malawi’s land area, 10% less than the percentage reported 
by IFPRI. Whether methodological or political, there are clear differences in the production and 
accuracy of these data. 
 
Figure 8. Summary of Disagreement between Multiple Land Use Datasets as to What is or is 
not Agriculture 

8A. Classification Disagreement 

Source:    
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3. FINDINGS 

We are assessing biophysical variability on agricultural land—variables that relate to agriculture (net 
primary productivity, normalized difference vegetation index, land surface temperature, elevation, 
etc.). In order to assess biophysical variability on agricultural land and minimize uncertainty, an 
agricultural land use confidence map was developed. We are not improving any individual land cover 
map or changing methodology. We are taking a set of land use/land cover maps and comparing 
them (they are all very different) in order to identify areas where the maps agree. For our analyses 
(especially crop modeling), we need to be certain that we are sampling on agricultural land.  

Where all five datasets agree that an area is agriculture, we are most confident that it is indeed 
agriculture. Five land use products—including FAO (2000/2010), MODIS (2001-2010), GlobCover 
(2005-06/2009), GLC (2000), and IFPRI (2002)—were compiled into a singular          1-kilometer 
resolution agricultural land use map, matching the spatial resolution of the MODIS satellite imagery. 
The grid is structured such that an area with rank 0 is where none of the datasets classifies that area 
as agriculture and a ranking of 5 is where all datasets agree that an area is classified as agriculture. 
This is shown in Figure 8B. Figure 8A illustrates the great differences between two land cover maps; 
it shows that we do not really know where agricultural land is. Figure 8B shows a map we developed 
to help minimize the uncertainty of our sampling method. Rank 5 indicated that all five datasets 
agree that a given area is classified as agriculture. If we sample points only on rank 5, we can be 
relatively confident that we are actually capturing agricultural land. 

8B. Land Use Uncertainty Minimization 

Source:  
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3.1. Conclusions  

 
Uncertainty and scaling problems (i.e., where different trends appear if measured at different scales) 
limit agricultural predictability in Malawi (scaling here refers to trends that vary across time and 
space at different scales). Predictions are critical to making useful decisions about allocating 
resources to improve production and yield, and  scaling up of improved agricultural technologies 
(i.e., in the sense of promoting adoption by a larger number of farmers across a wider geographical 
area) is frequently cited as the main solution to reducing food insecurity in southern Africa.  

In an effort to get a firmer handle on these concepts, we are seeking case studies through personal 
contacts and the literature where efforts to scale up the adoption of improved agricultural 
production technologies have occurred within, but not limited to, southern and eastern Africa, 
particularly through projects aimed at subsistence and smallholder farmers. The goal is to clearly 
articulate a climate-sensitive framework necessary for contextualizing proposed efforts to leverage 
food systems innovations to scale staple crop production (e.g., the climate resilient maize initiative). 

There are potential interactions with other GCFSI projects when the modeling and uncertainty 
assessment are completed, particularly with the marketing and economic activities. These climate 
changes may shock or alter economic activity related to food security. In addition, exploring issues 
of scale should illuminate key locations for better and more sensitive data gathering to be 
undertaken by LUANAR for better characterization of land use, ecological processes, and 
refinement of remote sensing data. All of these data will reduce uncertainty, better illustrate errors 
across different scales, and improve accuracy and precision of agricultural predictions. 
 

3.2. Next Steps and Follow-up 
 
Expected deliverables: presently, there are three papers planned for completion by the summer of 
2015 as a result of this work. We have several specific tasks to complete this project year. First, 
productivity trends of Malawi need to be calculated at varying scales (from 100m to the aggregate 
national level). This includes using our remotely sensed vegetation data to validate crop modeling 
and to identify areas where crop model errors are significant. The use of remote sensing data as a 
separate, independent measure of food production will allow us to identify areas of consistently 
productive land and areas of marginal land. Being able to identify marginal lands also will allow us to 
target some of the biophysical mechanisms behind changes in yield. 
 
Further, we need to assess land cover/land use during the peak of the growing season to calibrate 
and refine our remote sensing estimates. We will then need to identify already-existing sources of 
yield data (FAO and otherwise) and connect those measurements to crop model results and 
remotely sensed estimates. 
  
Finally, we will aggregate these results by developing a multi-disciplinary manuscript on integrating 
processes that operate at different scales in agriculture, and offer a climate-agriculture technology 
transfer course at LUANAR in Lilongwe in March 2015. 
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